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Abstract 
We present a software for the generation of dynamical systems. The main idea of this 
software is to introduce the concept of strong causality in generation procedure. Using a 
simple example we show how the different parts of the software work together. 

1 Introduction 

The design of dynamical systems for industrial applications can be divided in to two parts: 
first the identification of a plant or system and second the design of an appropriate controller. 
This paper presents a software tool that unifies identification and design task. Since 
identification and design are different tasks, they can be reduced to common search problem: 
Find a dynamical system that fulfils certain required properties.  
This search problem can be solved using an optimisation algorithm. In this paper we show 
how to combine and adapt two evolutionary optimisation algorithms to find optimal solutions. 
As evolutionary optimisation algorithms we use Genetic Programming and Evolution 
Strategy.  
We implemented this approach in the SCADS (Strong CAusality driven generation of 
Dynamical Systems) system. Another main property of SCADS is that one basic concept 
behind the implementation is the use of “Strong Causality”[7] through all stages of the search 
process. “Strong Causality” means that small variations of the individual, i.e. dynamical 
system, should produce small variations of the quality.  
Genetic Programming (GP)[4] is used for the structure identification of the dynamical system. 
The GP is adapted by implementing strong causality in the representation and in the genetic 
operators [6]. The Evolution Strategy (ES) [7]. is used to adapt the parameters of the 
dynamical systems. Strong causality in this algorithm means that the quality assignment to 
each system should be strong causal.  
One of the main aspects of SCADS is the practical usability. That’s why we build it up using 
Mathworks inc. MATLAB/Simulink. There are a lot of simulation systems, which are in 
practical use in a wide range of fields. One of these systems is MATLAB, which offers wide 
variety of tools for the design and identification of dynamical systems. Especially a number of 
toolboxes offer well-proven applications and tailored methods for the simulation of dynamical 
systems.  
In the next section we give an outline how to optimise dynamical systems using evolutionary 
algorithms. Then we present the different possibilities to introduce strong causality. At the 
end we present a small example in order to see how SCADS can be used and draw some 
conclusions from the presented work.  



2. Evolution of dynamical systems 

Our approach for the search of dynamical systems is to embed the search in an evolutionary 
process. Evolutionary algorithms (EA) have been used for a number of applications related to 
dynamical systems [7,4]. An evolutionary algorithm can be described as a so-called evolution 
loop.  
First we have to formulate an appropriate description of dynamical systems. That means that 
the description should be evolvable and be able to describe a wide variety of dynamical 
systems. We choose a presentation as a directed graph [6]. This special representation as a 
graph guarantees that it is possible to create closed loops in the dynamical systems, thus it is 
possible to generate the most common structures for dynamical systems. The nodes represent 
the standard building blocks for dynamical systems (e.g. P-,PD- ,PID-blocks etc.[2]). The 
vertices represent the signal flow between these blocks. One individual is a dynamical system, 
represented as a graph. That means, that we are evolving graphs. 
As an important feature it is necessary to assign to each individual a quality. In our case 
quality means: How well does the dynamical system fulfil the required task. In case of system 
identification, how well does it reproduce a given behaviour? In the case of controller design: 
how well does the system control a given plant. In order to assign a suited quality the user has 
to provide a calculation procedure, which involves the simulation of the dynamical system by 
a integration algorithm. As we use standard representation for functional blocks, we have to 
take in to account that the blocks are parameterised. Thus not only the structure of the 
dynamical system is important, also the parameters of the blocks are significant for the 
resultant system behaviour. We have to choose the appropriate parameter settings in order to 
able to compare two systems. Thus it is necessary to optimise the parameters in order that the 
quality criterion is fulfilled as best as possible. That means that besides a simple simulation of 
the dynamical system is it necessary to optimise the parameters of this system in order to 
determine the quality of the system.  
Providing the quality information it is easy to select the best individuals. The first choice 
would be to use truncation selection or tournament selection. But taking in to account that for 
each quality assignation a simulation is needed, we decide to choose another selection 
structure. For selection we take a certain number of individuals from the population, select the 
best from this group and replace the worst individuals by new generated individuals (called 
partial tournament selection). Thus we can guarantee that we have not a generational EA. 
That guarantees a better usage of available parallel resources. Using this approach for 
selection we can expect an efficient implementation of the EA. That is why we implement the 
quality assignment on independent, asynchronous computational slaves, which guarantee a 
linear speed up of the execution time.  

3 Strong Causality 

The next problem is how to define a strong causal quality function. This quality is decisive for 
the efficiency of the whole algorithm. Figure 1 presents two functions for quality assignment 
for control systems that depend on one parameter. The continuous line represent a quality 



function that tends to have big value changes with small parameter changes. The function is 
multimodal and hard to optimise for a wide variety of optimisation algorithms. The second 
function depicted in Figure 1 is a so-called strong causal function (dotted line). We can see 
that the function is smoother, thus small changes in the parameter gives also small changes in 
the quality. The second property of this function is that it is unimodal, thus it can be optimised 
very easy. The general notion of strong causality [7,1] is that small changes in the parameters 
should lead to a small change in the quality of the object, which is evaluated.  

Figure 1: Comparison between a Strong Causal (doted line) and a non Strong Causal quality 
function for simple control system 

 

In SCADS the user has to supply the quality function. If this function is strong causal or not is 
decided by the user. Some examples of how to design strong causal function can be found in 
some papers [1,3].  

4 An example 

As an example we want to present a simple dynamical system: The harmonic functions: 
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are to be identified. The well known solution is: x(t) = cos(t) and x(t) = sin(t). As input, we 
give SCADS measurement of the time behaviour of the dynamical system.  
In order to give SCADS some prior knowledge we set up a so-called frame system. The frame 
system determines which part of the dynamical system is to be searched, i.e. which subsystem 
has SCADS to evolve. In figure 2 a subsystem with the name GP1 has to be found. To assess 
the quality of the individual, we use the following quality function: 
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That is strong causal for this identification tasks. Thus we are seeking to minimize this 
quality.  
We tell SCADS our assumption that the result should be an autonomous system.  

Figure 2: Frame system for evolution of the harmonic functions 

 

For the presented simulation, we took a population size of 500 individuals in one population 
using a partial tournament selection of 25 individual per tournament replacing the 4 worst 
individuals by 4 newly generated one. We make only 1000 selections then we stop SCADS. 
This 1000 selections mean, that we have to perform 1000 quality assignments to get the 
quality of the newly generated individuals and 500 quality assignment in order to evaluate the 
start population. Figure 3 presents one run of SCADS for the harmonic functions:  

Figure 3: Development of the quality during the search of the harmonic functions. The curves 
for maximal, minimal and geometric mean value are presented 

 

We can see, how the minimum values decreases in discrete steps. In this figure the steps 
appears as straight lines. But in reality the lines has a slight rise because of the optimisation 
algorithm for the parameters used during the quality assignment. We see also that the mean 
quality do not change as fast as the minimal quality. This and the fact that maximum quality 
do not decrease, shows how quality in the population changes, i.e. better individuals become 



abundant in the population, but during the whole optimisation it is possible to generate bad 
individuals.  
Figure 4 shows the best initial system generated by SCADS. The figure shows that the 
individual is not a connected graph, which contains only transfer functions and simple 
mathematical operations for the signals. The quality of this system is 20.  

Figure 4: Best initial system for the GP1 subsystem 

 

Figure 5 presents the best individual generated by SCADS. Its quality is 1.5 10-9. Thus it is 
not possible to find any difference to the simulation of the searched system (see equation 1) or 
to the supplied data. We see also that SCADS generated a full-connected graph for the 
system. One interesting feature is that, due the optimisation some values have become large. 
Looking at the transfer function transf19 in figure 5, we see that the generated signal is zero. 
Because of this the integrator with initial value intc5 can take any initial value, the only 
prerequisite to get a good quality of the whole system is that the value of the Gain7 is 
correlated with the initial value of intc5 in order to compensate the initial value.  

Figure 5: Best final system for the GP1 subsystem 

K = -41461.3693
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5 Summary and outlook 

We have presented how the software package SCADS works for two different engineering 
tasks. We have also demonstrated how is it possible to integrate prior knowledge for the 
search process. We emphasize the importance of strong causal components in order to achieve 
an efficient search procedure.  



We are planning to extend this tool and to interface not only with MATLAB but also with 
other simulation engines such as SPICE.  
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