
Causality and Dynamical Systems
Ivan Santibáñez Koref and Ivo Boblan, Technische Universität Berlin, Bionik und Evolutionstechnik,

Ackerstr. 71–76, 13355 Berlin, Germany, e-mail: {isk,boblan}@bionik.tu-berlin.de

Abstract
We present a software for the generation of dynamical systems. The main idea of this
software is to introduce the concept of strong causality in generation procedure. Using a
simple example we show how the different parts of the software work together.

1 Introduction

The design of dynamical systems for industrial applications can be divided in to two parts:
first the identification of a plant or system and second the design of an appropriate controller.
This paper presents a software tool that unifies identification and design task. Since
identification and design are different tasks, they can be reduced to common search problem:
Find a dynamical system that fulfils certain required properties.
This search problem can be solved using an optimisation algorithm. In this paper we show
how to combine and adapt two evolutionary optimisation algorithms to find optimal solutions.
As evolutionary optimisation algorithms we use Genetic Programming and Evolution
Strategy.
We implemented this approach in the SCADS (Strong CAusality driven generation of
Dynamical Systems) system. Another main property of SCADS is that one basic concept
behind the implementation is the use of “Strong Causality”[7] through all stages of the search
process. “Strong Causality” means that small variations of the individual, i.e. dynamical
system, should produce small variations of the quality.
Genetic Programming (GP)[4] is used for the structure identification of the dynamical system.
The GP is adapted by implementing strong causality in the representation and in the genetic
operators [6]. The Evolution Strategy (ES) [7]. is used to adapt the parameters of the
dynamical systems. Strong causality in this algorithm means that the quality assignment to
each system should be strong causal.
One of the main aspects of SCADS is the practical usability. That’s why we build it up using
Mathworks inc. MATLAB/Simulink. There are a lot of simulation systems, which are in
practical use in a wide range of fields. One of these systems is MATLAB, which offers wide
variety of tools for the design and identification of dynamical systems. Especially a number of
toolboxes offer well-proven applications and tailored methods for the simulation of dynamical
systems.
In the next section we give an outline how to optimise dynamical systems using evolutionary
algorithms. Then we present the different possibilities to introduce strong causality. At the
end we present a small example in order to see how SCADS can be used and draw some
conclusions from the presented work.

2. Evolution of dynamical systems

Our approach for the search of dynamical systems is to embed the search in an evolutionary
process. Evolutionary algorithms (EA) have been used for a number of applications related to
dynamical systems [7,4]. An evolutionary algorithm can be described as a so-called evolution
loop.
First we have to formulate an appropriate description of dynamical systems. That means that
the description should be evolvable and be able to describe a wide variety of dynamical
systems. We choose a presentation as a directed graph [6]. This special representation as a
graph guarantees that it is possible to create closed loops in the dynamical systems, thus it is
possible to generate the most common structures for dynamical systems. The nodes represent
the standard building blocks for dynamical systems (e.g. P-,PD- ,PID-blocks etc.[2]). The
vertices represent the signal flow between these blocks. One individual is a dynamical system,
represented as a graph. That means, that we are evolving graphs.
As an important feature it is necessary to assign to each individual a quality. In our case
quality means: How well does the dynamical system fulfil the required task. In case of system
identification, how well does it reproduce a given behaviour? In the case of controller design:
how well does the system control a given plant. In order to assign a suited quality the user has
to provide a calculation procedure, which involves the simulation of the dynamical system by
a integration algorithm. As we use standard representation for functional blocks, we have to
take in to account that the blocks are parameterised. Thus not only the structure of the
dynamical system is important, also the parameters of the blocks are significant for the
resultant system behaviour. We have to choose the appropriate parameter settings in order to
able to compare two systems. Thus it is necessary to optimise the parameters in order that the
quality criterion is fulfilled as best as possible. That means that besides a simple simulation of
the dynamical system is it necessary to optimise the parameters of this system in order to
determine the quality of the system.
Providing the quality information it is easy to select the best individuals. The first choice
would be to use truncation selection or tournament selection. But taking in to account that for
each quality assignation a simulation is needed, we decide to choose another selection
structure. For selection we take a certain number of individuals from the population, select the
best from this group and replace the worst individuals by new generated individuals (called
partial tournament selection). Thus we can guarantee that we have not a generational EA.
That guarantees a better usage of available parallel resources. Using this approach for
selection we can expect an efficient implementation of the EA. That is why we implement the
quality assignment on independent, asynchronous computational slaves, which guarantee a
linear speed up of the execution time.

3 Strong Causality

The next problem is how to define a strong causal quality function. This quality is decisive for
the efficiency of the whole algorithm. Figure 1 presents two functions for quality assignment
for control systems that depend on one parameter. The continuous line represent a quality

function that tends to have big value changes with small parameter changes. The function is
multimodal and hard to optimise for a wide variety of optimisation algorithms. The second
function depicted in Figure 1 is a so-called strong causal function (dotted line). We can see
that the function is smoother, thus small changes in the parameter gives also small changes in
the quality. The second property of this function is that it is unimodal, thus it can be optimised
very easy. The general notion of strong causality [7,1] is that small changes in the parameters
should lead to a small change in the quality of the object, which is evaluated.

Figure 1: Comparison between a Strong Causal (doted line) and a non Strong Causal quality
function for simple control system

In SCADS the user has to supply the quality function. If this function is strong causal or not is
decided by the user. Some examples of how to design strong causal function can be found in
some papers [1,3].

4 An example

As an example we want to present a simple dynamical system: The harmonic functions:

() () with (0) 11x t y t x′ = − =
() () with (0) 0y t x t y′ = =

 (1)

are to be identified. The well known solution is: x(t) = cos(t) and x(t) = sin(t). As input, we
give SCADS measurement of the time behaviour of the dynamical system.
In order to give SCADS some prior knowledge we set up a so-called frame system. The frame
system determines which part of the dynamical system is to be searched, i.e. which subsystem
has SCADS to evolve. In figure 2 a subsystem with the name GP1 has to be found. To assess
the quality of the individual, we use the following quality function:

() (maxT 2
1 20

() d() () () ()Q x tout t y t out t x t= +− −∫)2

. (2)

That is strong causal for this identification tasks. Thus we are seeking to minimize this
quality.
We tell SCADS our assumption that the result should be an autonomous system.

Figure 2: Frame system for evolution of the harmonic functions

For the presented simulation, we took a population size of 500 individuals in one population
using a partial tournament selection of 25 individual per tournament replacing the 4 worst
individuals by 4 newly generated one. We make only 1000 selections then we stop SCADS.
This 1000 selections mean, that we have to perform 1000 quality assignments to get the
quality of the newly generated individuals and 500 quality assignment in order to evaluate the
start population. Figure 3 presents one run of SCADS for the harmonic functions:

Figure 3: Development of the quality during the search of the harmonic functions. The curves
for maximal, minimal and geometric mean value are presented

We can see, how the minimum values decreases in discrete steps. In this figure the steps
appears as straight lines. But in reality the lines has a slight rise because of the optimisation
algorithm for the parameters used during the quality assignment. We see also that the mean
quality do not change as fast as the minimal quality. This and the fact that maximum quality
do not decrease, shows how quality in the population changes, i.e. better individuals become

abundant in the population, but during the whole optimisation it is possible to generate bad
individuals.
Figure 4 shows the best initial system generated by SCADS. The figure shows that the
individual is not a connected graph, which contains only transfer functions and simple
mathematical operations for the signals. The quality of this system is 20.

Figure 4: Best initial system for the GP1 subsystem

Figure 5 presents the best individual generated by SCADS. Its quality is 1.5 10-9. Thus it is
not possible to find any difference to the simulation of the searched system (see equation 1) or
to the supplied data. We see also that SCADS generated a full-connected graph for the
system. One interesting feature is that, due the optimisation some values have become large.
Looking at the transfer function transf19 in figure 5, we see that the generated signal is zero.
Because of this the integrator with initial value intc5 can take any initial value, the only
prerequisite to get a good quality of the whole system is that the value of the Gain7 is
correlated with the initial value of intc5 in order to compensate the initial value.

Figure 5: Best final system for the GP1 subsystem

K = -41461.3693

Init.Cond. = 41461.3598

K = -41461.3693

Init.Cond. = 41461.3598

5 Summary and outlook

We have presented how the software package SCADS works for two different engineering
tasks. We have also demonstrated how is it possible to integrate prior knowledge for the
search process. We emphasize the importance of strong causal components in order to achieve
an efficient search procedure.

We are planning to extend this tool and to interface not only with MATLAB but also with
other simulation engines such as SPICE.

Acknowledgment

The work presented was supported by the grant ”Bionik-Kompetenz-Netz” (No. 01RR0102)
of the Federal Ministry of Education and Research.

Bibliography

[1] I. Boblan, I. Santibáñez Koref, A. Schütte.A New Integral Criterion for Parameter
Optimization of Dynamic Systems with Evolution Strategy, VDI Berichte Nr. 1526, pp.
143 - 150, 2000.

[2] R.C. Dorf, R.H. Bishop, Modern Control Systems, Prentice Hall, 2000.
[3] S. Hirche. I. Santibanez Koref , I. Boblan., "Design of Strong Causal Fitness Functions",

Soft Computing Systems, Abraham A., Ruiz-Del-Solar J., Köppen M. (Eds.), IOS Press,
Amsterdam, 2002, p.183-192.

[4] J.R.Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection,MIT Press, 1992.

[5] J.R. Koza et al., Automatic creation of human-competitive programs and controllers by
means of genetic programming, Genetic Programming and Evolvable Machines, 1 (1 -2)
pp. 121 - 164, 2000.

[6] J. Niehaus, W. Banzhaf, Adaption of operator probabilities in genetic programming, In
Julian F. Miller, et al., ed., Genetic Programming, Proceedings of EuroGP’2001, volume
2038 of LNCS, pp. 325–336, Springer-Verlag, 2000.

[7] I. Rechenberg, Evolutionsstrategie 1994, Fromann Holzbog, Stuttgar, 1994.

	Causality and Dynamical Systems
	1 Introduction
	2. Evolution of dynamical systems
	3 Strong Causality
	4 An example
	5 Summary and outlook
	Acknowledgment
	Bibliography

